Note: In order to reduce the interference of other sounds on the voice sensor, we need to carry out this experiment in a relatively quiet environment.

1.Preparation

1-1. The position of the Voice sensor module in the robot

!!! Note: In this experiment, we need to install the jumper cap in the position shown below.

In the picture shown below, the voice sensor module with red wire frame.

Programming method:

Mode 1 online programming: First, we need to connect the micro:bit to the computer by USB cable. The computer will pop up a USB flash drive and click on the URL in the USB flash drive: http://microbit.org/ to enter the programming interface. Add the Yahboom package: http://microbit.org/ to enter the programming

Mode 2 offline programming: We need to open the offline programming software. After the installation is complete, enter the programming interface, click [New Project], add Yahboom package: https://github.com/lzty634158/Tiny-bit, you can program.

In the picture shown below, the ultrasonic module with red wire frame.

2.Learning goal

2-1. Learn how to use voice sensor return graphically program building blocks and RGB searching lights graphically program building blocks

2-2. The function is realized by programming: when the voice sensor detects sound intensity, the light of the robot car will change color randomly.

3.Search for block

The following is the location of the building blocks required for this programming.

4.Combine block

The summary program is shown below:

										+ +	+	-+-													
										on sta	art		+												
										show	icon	÷	-	+											
+	+	+	÷							RGB	Car Big	g value	e OFF	•											
forever			+	+	+	+	+	+	+		RGB (Car Pro	ogram	clear											
if	V	oice	Senso	r ret	urn	> •	10	0 t	hen		RGB (Car Pro	ogram	show											
set	it	em 🔻	to	pick	rand	om Ø) to	5	+-				+	+	+ -										
RGB	Car	Big2	value	1 pi	ick ra	andom	0	to 25	5 v a	alue2	pick ra	andom	0 t	0 255	j val	lue3	pick	rand	om	0 t	to 25	55			
	RG	iB Car	Prog	ram	show	color	red	pick	rand	om 🛛 0	to 2	55) gr	reen	pick I	random	0	to (255	blue	e pi	ick ra	andom	0	to	255
	RG	iB Car	Prog	ram	show	+	+	+	÷	+ +	+	+	+	+	+	+	+	÷	+	+	+	+	+	÷	+
•			101																						
			+																						

5. Experimental phenomena

After the program is downloaded, we need to put robot car on the desk. When we Shooting table, the lights of the robot will be change color randomly.

